True Or False

- **1.** False If λ is an eigenvalues of a matrix *A*, then the linear system (λ I-A)X =0hasonly the trivial solution.
- **2.** True If 0 is an eigenvalue of a matrix A, then A^2 is singular.
- **3.** True If A is diagonalizable, then there is a unique matrix P such that $P^{-1}A P$ is diagonal.
- **4.** True If A is diagonalizable, then A^{T} is diagonalizable.
- **5.** False Every eigenvalue of a complex symmetric matrix is real.
- 6. True If A is a square matrix with distinct real eigenvalues, then it is possible to solve $X^{/} = A$ X by di a gonalization.
- 7. False The inner product operation must satisfy 2 conditions.
- 8. True If the columns of A are linearly independent, the equation Ax=b has exactly one least squares solution
- 9. True In a inner product space (V,(<,.>)) if x and y are unit vectors orthogonal to each other then||x+y||=2
- **10. False** The inner product of two vectors cannot be a negative real number
- **11. True** if we have $\vec{u} = (4, 3), \vec{v} = (3, 5)_{\text{then}} \|\vec{v}\|_{\text{is}} \sqrt{34}$
- **12. True** If a square matrix A is orthogonal, then $A^{-T} = A$.
- **13. True** If *A* is a square matrix, and det(A) = 2, then *A* is not orthogonal.
- **14. True** If S is an orthogonal basis for n-dimensional inner product space *V*, then *V* is the Euclidean inner product space.
- **15. False** A square matrix whose rows form an orthogonal set is orthogonal .
- **16. False** An 3×2 matrix A is orthogonal if $A^T A = I$.
- **17. False** Every orthogonal matrix is orthogonally diagonalizable.
- **18. True** If *A* is orthogonally diagonalizable, then *A* has real eigenvalues.
- **19. false** If A is an 3 × 5 matrix and T is a transformation defined by T(x)=Ax, then the domain of T is \mathbb{R}^3 .

20. True	A linear transformation preserves the operations of vector addition and scalar multiplication.
21. True	(If L is a linear operator mapping a vector space V into a vector space W, then $L(0_V)=0_W$.
22. True	The range of L is the image of the entire vector space.
23. true	If A and B are the same size and both represent the same linear operator, they are similar.
24. True	If a square matrix A has an LU-decomposition, then A has a unique LDU- decomposition.
25. False	Every square matrix has an LU-decomposition.
26. False	If A is an m \times n matrix, then $A^T A$ is an m \times m matrix
27. False	If A is an m \times n matrix, then the eigenvalues of $A^T A$ are positive real numbers.
28. True	Every m x n matrix has a singular value decomposition.
29. True	In linear programming problems, a linear objective function that is to be maximized or minimized.
30. True	All variables in linear programming problems restricted to nonnegative values.
31. True	The maximization or minimization of a quantity is the objective of linear programming.
32. false	The following LP problem has an unbounded feasible region:
	Minimize $c = x - y$

subject to $4x - 3y \le 0$ $x + y \le 10$ $x \ge 0, y \ge 0$

33. False Every minimization problem can be converted into a standard maximization problem.