True Or False

1. False If λ is an eigenvalues of a matrix A, then the linear system $(\lambda I-A) X=O$ hasonly the trivial solution.
2. True If 0 is an eigenvalue of a matrix A, then A^{2} is singular.
3. True If A is diagonalizable, then there is a unique matrix P suchthat $P^{-1} A P$ is diagonal.
4. True If A is diagonalizable, then A^{T} is diagonalizable.
5. False Every eigenvalue of a complex symmetric matrix is real.
6. True If A is a square matrix with distinct real eigenvalues, then it is possible to solve $X^{/}=A$ X by di a gonalization.
7. False The inner product operation must satisfy 2 conditions.
8. True If the columns of A are linearly independent, the equation $A x=b$ has exactly one least squares solution
9. True In a inner product space $(\mathrm{V},(\langle,\rangle)$.$) if \mathrm{x}$ and y are unit vectors orthogonal to each other then $\|x+y\|=2$
10. False The inner product of two vectors cannot be a negative real number
11. True
if we have $\vec{u}=(4,3), \vec{v}=(3,5)$ then $\|\vec{v}\|_{\text {is }} \sqrt{34}$
12. True If a square matrix A is orthogonal, then $A^{-T}=A$.
13. True If A is a square matrix, and $\operatorname{det}(A)=2$, then A is not orthogonal.
14. True If S is an orthogonal basis for n-dimensional inner product space V, then V is the Euclidean inner product space.
15. False A square matrix whose rows form an orthogonal set is orthogonal .
16. False \quad An 3×2 matrix A is orthogonal if $A^{T} A=I$.
17. False Every orthogonal matrix is orthogonally diagonalizable.
18. True If A is orthogonally diagonalizable, then A has real eigenvalues.
19. false If A is an 3×5 matrix and T is a transformation defined by $T(x)=A x$, then the domain of T is \mathbb{R}^{3}.
20. True A linear transformation preserves the operations of vector addition and scalar multiplication.
21. True If L is a linear operator mapping a vector space V into a vector space W, then $\mathrm{L}(\mathrm{Ov})=0 \mathrm{w}$.
22. True The range of L is the image of the entire vector space.
23. true If A and B are the same size and both represent the same linear operator, they are similar.

If a square matrix A has an $L U$-decomposition, then A has a unique $L D U$ decomposition.
25. False

Every square matrix has an LU-decomposition.
26. False

If A is an $m \times n$ matrix, then $A^{\top} A$ is an $m \times m$ matrix
27. False
28. True
29. True
30. True
31. True
32. false

$$
\begin{array}{ll}
\text { Minimize } & c=x-y \\
\text { subject to } & 4 x-3 y \leq 0 \\
& x+y \leq 10 \\
& x \geq 0, y \geq 0
\end{array}
$$

33. False

Every minimization problem can be converted into a standard maximization problem.

